

A Virtual Bootcamp for Astronomy Graduate Students

SESSION 5 EXERCISES

Exercise 1

- 1. Generate a random variable follow a **uniform distribution** between 0 and 50
- 2. Generate a random variable follow a **normal distribution** with mean = 100 and standard deviation of 50
- 3. Use the accept-reject approach to transform numbers generated from a uniform distribution into those following the distribution $P(x) = (1/(e-1))\exp(x)$ for 0 < x < 1 and 0 elsewhere
 - a. Draw two random samples x^* , y^* from the U(0,1) distribution
 - b. If $y^* < cf(x^*)$, keep x^* [remember the normalization c here]
 - c. If not, draw another two random samples from the distribution
 - d. Continue until you have 100 samples
 - e. Histogram the samples and over plot the PDF
- 4. Use CDF sampling to do the same thing above.
 - a. To do this, compute the CDF F(X) by integrating the PDF P(x) from $-\infty$ to X
 - b. Then find the inverse $F^{-1}(X)$ of the CDF.
 - [HINT: Remember an inverse function $F^{-1}(x)$ is such that $F(F^{-1}(x)) = x$]
 - c. Draw a random samples x_1 from the U(0,1) distribution
 - d. Then the variable $y = F^{-1}(x_1)$ will have the probability distribution you seek
 - e. Continue until you have 100 samples
 - f. Histogram the samples and over plot the PDF